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Lack of universality in two-dimensional multicomponent spreading phenomena
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Magnetic entities are introduced in a two-dimensional Eden model as additional degrees of freedom in
order to model multidomain spreading phenomena. The elements of the growth are “spins” taking g
states and are coupled or not via an energy J, as in the Potts model, thus leading to a competition be-
tween species. The internal cluster spreading is found to result from a competition between growing
domains. Complex mechanisms such as trapping, jamming, and coalescence occur between the growing
domains. A large variety of critical and nonuniversal regimes, from subcritical to self-organized critical
behaviors, are obtained depending on nonuniversal parameters such as the lattice structure, the number
of internal degrees of freedom g, and the coupling J. For the square lattice, the fractal dimension is 1.50
and the mass distribution exponent 7 is 1.63. For the triangular lattice, the fractal dimension varies from
1.70 to 1.83 depending on the coupling value and the mass distribution exponent 7 also varies from 1.67
to 1.98 depending on the coupling value. The correspondence and differences with respect to the per-

colation phenomenon are outlined.

PACS number(s): 05.40.+j, 61.43.Hv, 64.60.Ak

I. INTRODUCTION

Spreading phenomena are common nonequilibrium
processes in nature: surface wetting, viscous fingering,
liquid invasion in porous medium, grain coalescence in
alloys, fracture propagation, but also evolution of terri-
tories or population of insect swarms, virus propagation,
and so on. For spreading processes driven by cooperative
or nonlinear evolution rules, the systems develop patterns
which often reach a high level of complexity [1,2]. In
modern statistical physics, the understanding of a wide
variety of natural spreading phenomena is approached by
inventing simple models. Their complexity is studied in
terms of ‘‘criticality” [2]. A spreading phenomenon is
said to be in a critical regime when the characteristic
length of the pattern becomes infinite as the spatial exten-
sion of the spreading tends to infinity, i.e., in a fractal
growth regime [1]. A subcritical regime occurs when the
spreading stops leading to a finite characteristic length of
the patterns. A supercritical regime will be said to take
place when an infinite cluster can grow but inner patterns
have a finite characteristic length, i.e., for nonscale in-
variant structures. The signatures of strict criticality are
known to be, e.g., the fractality of a pattern or the power
law behavior of the size distribution of spreading events
[3].

The most simple nonequilibrium spreading model is
the Eden model which describes the aggregation of iden-
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tical particles. The model was imagined in order to mim-
ic the growth of bacterian cells colonies [4] and was rap-
idly generalized to simulate other one-component spread-
ing phenomena [5-9]. In the simplest version of the
model [5], a single step of the growth consists in random-
ly selecting a particle on the surface of a seed, a cluster
thereafter, and at random filling one of its empty neigh-
bors by a new particle. The generated clusters are found
to fill the entire available space showing trivial nonfractal
compact structures.

However, in natural systems, the growing entities usu-
ally present additional degrees of freedom. Examples of
multicomponent systems are alloys, fluids, magnets,
ceramics, polymers, bacterian cells, viruses ,. . . .

In this paper, we consider an arbitrary number g of
internal degrees of freedom for a simple growth model
whence much extending the domain of applications of the
Eden growth process. The model is defined in Sec. II. In
Sec. III, we present the various critical regimes which
can be found in this multicomponent Eden-Potts two-
dimensional model. We observe the lack of universality
of two-dimensional multicomponent spreading phenome-
na on different lattices. This is discussed in Sec. IV. A
conclusion is drawn in Sec. V.

II. THE MULTICOMPONENT EDEN MODEL

In the multicomponent Eden model, the elements of
the growth are represented by scalar “spins” o; taking g
states and coupled by a dimensionless energy taking two
values J and O as in the Potts model [10,11]. Starting
from a single spin of state o,=1 as seed, the growth con-
sists in successively selecting at random one site i, then
the spin of state 1 <o; <g, on the cluster surface. From
this site i, a new spin is glued on an empty nearest neigh-
boring site j chosen at random. The state of this new
spin is 1 =0 ; =g and the value chosen with a probability
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exp(JSain)
exp(J)+qg—1

among the g states and while 6, , is the Kronecker func-
tion. This rule is repeated until a desired total number N
of spins is reached. After being glued, each spin is frozen
Sforever. This is quite different from the classical Potts
model which is usually studied in its equilibrium state.
The process of the present model is history dependent
(non Markovian) and fully irreversible (far from equilibri-
um). The dynamics of the model are thus expected to be
different from the classical Potts dynamics [11]. The pa-
rameter J can be related to the affinity of aggregation be-
tween different species of particles, or more generally J
represents the ‘‘intensity” of the internal competition
occurring between the g species. Instead of the dimen-
sionless energy J € ]— w0, + o[, it is better to consider a
parameter p as the underlying control parameter

_ exp(J)
P exp(J)+g—1 "~

One should note that for p =1, the Eden growth case is

(1)

()
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recovered because the seed species totally fills the grow-
ing cluster. A binary Eden growth occurs for g =2 [12].
For g > 1 and for values of p strictly different from one,
the growth rule leads to the existence of growing domains
distributed in clusters. A domain is defined as a set of
connected spins in the same state. Figures 1(a)—1(c) show
three typical g-component clusters of N =10000 spins
each for, respectively, ¢ =2, 3, and 4 on the square lattice
and for a different p value. It will be understood below
that the p values chosen for this illustration correspond
to a seed species domain which is very large and extends
to the N =10000 cluster boundary when J >0. For J <0
(or p <1/q), antiferromagneticlike configurations are ob-
served as shown in Fig. 1(d) for ¢g=3 and /= —1. In this
case, very small domains are seen. Each ‘“‘color” in Figs.
1(a)-1(d) represents a spin species. While the overall

cluster growth is strictly equivalent to the classical Eden
process leading to round and compact clusters, the inter-
nal (colored) patterns show trapped or meandering
domains of the various g species.

It is clear that each domain represents a hindrance for
the growth of the other neighboring domains.

Some

FIG. 1. Three typical Eden-Potts spin clusters of mass N =10000. (a) for ¢ =2 and p =0.75; (b) for ¢ =3 and p =0.88; (c) for g =4

and p =0.92; (d) for g =3 and p=0.15.
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domains can be trapped inside large ones of other species
or jammed between others. Domains of the same species
can also coalesce during the growth. Such an observation
raises the question of a percolationlike mechanism for the
seed species domain and whether a critical p, exists.
Even though the growth rule of the model is very simple,
it should thus generate complex kinetic phenomena. It
can be emphasized that the growth is thus more complex
than classical epidemic [9] or forest fire models [13]
where only “immune,” i.e., nongrowing sites, constitute
obstacles for the spreading of a single component
domain.

III. NUMERICAL RESULTS

A. The earliest stages of the cluster growth

At the very earliest stages of the cluster growth, the
seed type state dominates the multicomponent spreading
process. After some steps, new domains of the (¢ —1)
other species are ‘“‘nucleated” and infect the seed cluster
surface. The latter new domains also grow and the
spreading phenomenon reaches a steady state in which
domains of the g species spread and compete with each
other on the surface of the growing cluster.

In such a steady state, the concentrations c; to c, of
the g kinds of species are expected to be 1/q. Figure 2
presents the evolution of the concentration of the various
species as a function of the cluster mass N for a ¢=3
multicomponent spreading phenomenon and for a posi-
tive coupling J=1.5. The concentration of the seed
species ¢, decreases from 1.0 for N=1 and reaches 1/q
for large N values. The other concentrations c, to ¢, in-
crease from O for N=1 and reach 1/q for large N values.
For large N values, the concentrations ¢; to ¢, are sub-
mitted to fluctuations around the steady-state value 1/g.

Figure 3 presents the seed domain pertaining to a
three-component cluster of N =250000 spins. The perim-
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FIG. 2. The evolution of the concentrations of the various
components in ¢ =3 Eden-Potts clusters as a function of the
mass N. The coupling constant J was set to 1.5. Each dot
represents an average of the concentration over 25 clusters.

3449

FIG. 3. The seed domain of a N =50000 Eden-Potts cluster
of ¢ =3 components. The coupling constant J was set to 1.5.

eter of this domain is very jagged reflecting the presence
of many obstacles. It is of interest to know the condi-
tions for which the spreading domains can grow forever
or not. This is in line with classical percolation studies
even though the present model is a priori very different.
In percolation studies, the system is in a static state for
which both geometrical and physical properties are
searched for at fixed concentrations. Here, the system is
in a dynamical steady state with roughly constant con-
centrations at large Monte Carlo times.

We have, e.g., numerically performed the measure of
the probability P to have the seed type domain reaching
the surface, i.e., when the seed type of spin is always part
of the growth front and connected to the seed by similar
spins. We have investigated large clusters for various g
and J, thus p values on several two-dimensional lattices.
Clusters of about one million spins have been simulated.
The mass distribution of the various domains has also
been measured. Such a numerical study will help us to
discern the possible links between equilibrium spin mod-
els or random percolation and the present multicom-
ponent spreading model.

B. The honeycomb lattice

For the honeycomb lattice (having a coordination
number z=13), the probability P, is numerically found to
be zero for all 0 <p <1 values for clusters with mass N up
to 8 X 10°. For p values very close to 1, P, is found to be
nonzero but P shrinks to zero as the size of the clusters
is increased. The multidomain spreading is always found
to be in a subcritical regime for any q and 0 <p <1 values.
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C. The square lattice

Figure 4 presents the percolation probability P as a
function of p for two-component (¢ =2) clusters of size
N=2X10° on a square lattice. The probability P (p)
jumps from zero to unity near some critical value
p.~0.78. Each dot represents an average of P, over 40
two-component clusters. Figure 5 presents the threshold
value p, as a function of the mass N of the clusters. Each
dot of Fig. 5 represents the simulation of about 1000 clus-
ters. The value of p.(N) was found to reach asymptoti-
cally the value p, =0.83+0.03 for N <8X 10° but does
not seem to ever reach unity. Finite-size scaling argu-
ments of classical percolation [14] equate the connectivity
length £~ (p, —p)~ " with the lattice or cluster size N'/2
resulting in the relation

plo0)—p (N)~N"1/2v 3)

which gives a direct measure of the critical exponent v.
This theoretical law is drawn in Fig. 5. The critical ex-
ponent is found to be v=0.811+0.06. Thus the transition
at p,=0.83%0.03 (J,=1.58%0.22) does not seem to be a
finite-size artifact.

In this particular ¢ =2 case, the domains of both
species are only finite below p., and infinite domains can
grow in the cluster with a probability [14]

P,.~(p—p )

above p.. The critical exponent 3 is numerically found to
be f=0.7=%0.1 from the data in Fig. 4. Because the mul-
tidomain competition cannot have any winner or con-
queror in the steady state, infinite domains of both
species can coexist into an infinite cluster.

For g >2, P (p) was numerically found to converge to
zero for large N values and for all 0<p <1 values. The
latter result means that only finite domains are found for
q>2 on a square lattice. For g>2, the multidomain
spreading phenomenon is subcritical. This was verified
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FIG. 5. The threshold value p, as a function of the size N of
the clusters. The continuous line is the fittest power law decay
of p.(N) towards the asymptotic threshold p (e )=0.83 [see
Eq. (2)]. The dashed horizontal line cuts the vertical axis at the
latter threshold.

with clusters up to 8 X 10° spins on the square lattice.

In terms of a polychromatic invasion problem, a pan-
chromatic regime [15] can thus occur for p > p. only for
the ¢ =2 case on the square lattice. This g =2 case is
therefore the only one investigated for the mass distribu-
tion behavior and the fractal dimensionality of the clus-
ter. The mass-distribution n(s) of the domains obtained
by the Hosen-Kopelman numerical method [16] is as-
sumed to follow the scaling relation

n(s)~s "exp(—s/s¢) , (5)

where s, is the characteristic mass of the domain and
diverges in the critical situations [3]. For the square lat-
tice, the strict power-law (for s, — + o ) behavior charac-
terizing the critical behavior is found only at p. with the
exponent 7 numerically estimated to be 7=1.6310.05 (see
Fig. 6 where the curve was obtained from an average over

p

FIG. 4. The probability P, to have an infinite domain grown
from the seed as a function of p and for ¢=2 on a two-
dimensional square lattice. The curve is drawn for N =200 000
spins.
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FIG. 6. The mass distribution of the domains into two-
component clusters of 200000 spins on a square lattice for

p=0.83=p,.
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40 clusters of mass N=5X10° for p~p_.). The devia-
tions from the power-law behavior for large mass values
are occurring from well known finite-size effects [14].

Figure 7 shows a spanning seed cluster at p, for a two-
component cluster of mass N =100000. The distribution
of the various components is homogeneous (in large clus-
ters). The fractal dimension of each component is thus
D;=2.0 as estimated by the gyration radius method [17].
However, the seed domains which span the large clusters
are found to be fractal at p,, a property which is another
signature of criticality [1,18,19]. The fractal dimension
D, of the seed domain at p, is numerically found to be
D;=1.5%+0.1 which is lower than the fractal dimension
D;=91/48 (~1.86) of classical percolating clusters
[14,19]. One should also note that the hyperscaling rela-
tion [14] of classical percolation

Dir—1)=d, (6)

which relates the fractal dimension D > the size-
distribution exponent 7, and the lattice dimension d
(herein d =2) does not hold here.

Summarizing what happens for ¢ =2 on the square lat-
tice (z=4), the spreading regime is critical at p_, subcriti-
cal below p, because the domains are only finite, and
above p., the regime is supercritical because P is
different from zero and n(s) does not follow a power-law
behavior with a nonclassical exponent.

D. The triangular lattice

For the triangular lattice (z=6), the spreading process
is quite different. P_ values are finite for all values

FIG. 7. A spanning seed domain (at p.) in a cluster of mass
N =100000 on the square lattice.
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0=<p<1. Thus the g=2 steady-state case is critical
whatever the value of the external parameter 0<p < 1.
The mass-distribution n(s) for the special case of a two-
component (g =2) spreading process, in particular, for
the p =3 case is shown in Fig. 8. The curve is a power
law with an exponent 7=1.96+0.08, a value which is
close to the two-dimensional percolation value
7=187/91 (=2.05). The same type of power-law
behavior is found for all values 0<p <1. Figure 9
presents the estimated values of 7 as a function of the pa-
rameter p. Each value is an average over 40 clusters of
mass N=5X10°. The critical exponent 7 seems to be
dependent of p. The change of the 7 value is well marked
for p close to 1.

Moreover, the fractal dimension of the seed domain is
found to be D,=1.8310.05 for p=1. This value is close
to the fractal dimension (91/48) of classical percolating
two-dimensional clusters. Figure 9 presents the estimat-
ed values of 7 as a function of the parameter p. The criti-
cal exponent D, seems to be weakly dependent of p ex-
cept for p close to one where D, falls to 1.7. Close to
p =1, the hyperscaling relation of Eq. (6) does not hold
for a two-component spreading on the triangular lattice.
Further extensive simulations should make the values of
the critical exponents more precise and clarify the p
dependence on D, and 7. A spanning seed domain in a
large cluster N =100 000 is shown in Fig. 10.

For ¢>2 and for any 0=<p <1 values, P_(p) con-
verges towards zero for large N values and only finite
domains grow. This was verified for clusters of mass up
to N=8X10°.

IV. DISCUSSION

The critical regimes for the various lattice cases exam-
ined here are summarized in Table I. In view of the
above features of the spreading and in line with statistical
mechanics studies, it is natural to relate the findings to
percolation models. The major difference between the
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FIG. 9. The critical exponents D, and 7 as a function of p for
the Eden-Potts model on a triangular lattice. Each data point
represents an average over 40 clusters of mass N =5X10°.

above growth model and percolation is that the latter is
characterized by a static disorder while growth induces
herein some order (or correlations) via the coupling pa-
rameter. Unconstrained percolation [14] is, however,
recovered for the particular case of decoupled spins, i.e.,
for J=0 (or p=1/q). Let us examine the different cases.

For unconstrained site percolation on a honeycomb
lattice, the critical concentration is ¢;=~0.70 [14,19]
which is quite larger than the steady-state concentration
1/q of the multicomponent spreading. Percolation is
thus not possible for p =1/q. For p <1/4, the proximity
of spins in the same state is less favorable than for the
p=1/q case, and percolation is expected to not occur.
For p > 1/q, correlations seems to be not sufficient to in-
duce percolation.

For unconstrained site percolation on the square lat-
tice, the critical concentration is ¢, ~0.593. Since ¢, > 1,
this does not allow for a two equivalent component
simultaneous percolation. This is thus in contrast to the

FIG. 10. A spanning seed domain (at p =0) in a cluster of
mass N =100 000 on the triangular lattice.
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TABLE 1. Critical regimes of the multicomponent Eden-
Potts model for various two-dimensional lattices and for various
values of g.

Lattice z q Criticality
honeycomb 3 >1 subcritical
square 4 2 critical at p,~0.83+0.03
square 4 >2 subcritical
triangular 6 2 self-organized
triangular 6 >2 subcritical

present two-component Eden model on the square lattice
for which a critical state exists. For p <1/g, the proximi-
ty of spins in the same state is less favorable than for the
p=1/q case, and percolation should not occur. For
p > 1/q, large domains can be observed, of course. The
size of these domains increases with p. On length scales
larger than the domain size, the coalescence of domains
occurs. Thus, one expects to recover percolationlike
phenomenon on large length scales for the present
growth model [20]. However, such a percolation could
not correspond to classical percolation on a square lattice
since the domains do not conserve the symmetry of the
underlying lattice [20].

Nevertheless, the critical exponents of the two-
component spreading on a square lattice are quite
different from unconstrained percolation exponents (see
Table II). This expresses that the criticality of the
present model has a different nature from that of percola-
tion.

For unconstrained site percolation on a triangular lat-
tice, two infinite clusters can simultaneously exist, in fact,
since ¢; =0.5 [14]. In this case, the percolation threshold
corresponds exactly to the steady state concentration
1/g =1 in the presently examined two-component Eden-
Potts model. The growth is thus always driven (see Sec.
III A) towards a steady state corresponding to the critical
state of random site percolation. Such a behavior is simi-
lar to a self-organized critical phenomenon [21,22] where
the order parameter of a far from equilibrium dynamical
process is tuned to a value which corresponds to a critical
point.

For p different from 1/gq, the order introduced via J
could not destroy the percolation which is a disorder
property. Moreover, trapping and jamming processes are
not present in the unconstrained and static percolation
model. Table II gives the critical exponents for the
present model and percolation. The critical exponents
found herein are, however, quite different from the classi-
cal percolation ones.

V. CONCLUSION

We have introduced a kinetic ‘“Eden-Potts” growth
model simulating a multicomponent spreading
phenomenon, like a polychromatic invasion problem.
The simple growth rule of the model already induces
complex dynamical mechanisms like trapping, jamming,
and coalescence of growing domains during the cluster
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TABLE II. Critical exponents for, respectively, the two-dimensional multicomponent Eden-Potts
model on square and triangular lattices, two-dimensional random percolation, and the two-dimensional
q =2 Potts model. The exponent Dy is the fractal dimension of the spanning domains, 7 characterizes
the critical domain size distribution, v is the correlation length exponent, and f is the order parameter

exponent.
g =2 Eden-Potts model
Critical Square lattice Triangular lattice Unconstrained qg=2
exponent for J=J, for J=0 percolation Potts model
D, 1.50+0.10 1.83+0.05 91/48 15/8
T 1.63+0.05 1.96+0.08 187/91 31/15
v 0.81£0.06 4/3 1
B 0.70+0.10 5/36 1/8

growth history. For the multicomponent spreading, vari-
ous critical regimes are emphasized depending on the lat-
tice structure, the number of internal degrees of freedom
g, and the coupling J. Critical behaviors with infinite
fractal domain growth are numerically found to occur
only for the two-component spreading on square or tri-
angular lattices. We should recall that the p regimes are
also different.

The values of the critical exponents of the two-
dimensional multicomponent Eden model are nonuniver-
sal, i.e., they depend on the underlying two-dimensional
lattice. The critical exponents which specify the univer-
sality class of the domain growth kinetics [23] are quite
particular: their values are far from the traditional
values of critical [24-27] and percolation [14,19] phe-
nomena. Let us also add here that the fractal dimension
differs from the cluster-cluster aggregation model [28]
where D,=1.38. They are also markedly distinguished
from the Potts model exponents (see Table II).

The multicomponent Eden-Potts model is a nonequili-
brium dynamical process indeed by opposition to the
classical Potts model which is an at-equilibrium model.
Quite interestingly, the present model leads to a non-
equilibrium steady state where no species can dominate
the others for all values of J (or p). This is in contrast to

the Potts model in which a species can dominate the oth-
ers above some critical J,=In(1+V'q ) value [11]. The
nature of the transition in both models is thus quite
different.

The above model opens new domains of investigations
in statistical physics. A more general theory than classi-
cal percolation, or equilibrium phase transition is needed
to explain such nonuniversal behaviors of multicom-
ponent spreading phenomena. Besides future theoretical
work, further extensive simulations should be made in or-
der to precise the critical exponent values. The
nonuniversality regimes should be investigated on other
lattices and with more general interactions.
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FIG. 1. Three typical Eden-Potts spin clusters of mass N =10000. (a) for g =2 and p=0.75; (b) for ¢ =3 and p =0.88; (c) for g =4
and p=0.92; (d) for g =3 and p=0.15.



